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The correlation length of the Potts model at the first-order 
transition point 

E Buffenoir and S Wallon 
Service de Physique Th6oriquet, CF-Saclay, 91 191 Cif-sur-Yvette Cedex, France 

Received 23 July 1992, in final form 22 March 1993 

Abstract We consider the Q-state two-dimensional PoUg model for Q > 4, i.e. in the first-order 
phase transition repime. Following a scheme given by P Martin, we prove an identiw between 
the spenra of the transfer manices of the POID model and the transfer matrices connecting 
the diagonals of a fi-vertex model. By using a Bethe ansatz for the latter, we obtain an exact 
expression for the correlation length of the Pons model at the transition point. 

1. Introduction 

The square lattice 2D Potts model with Q z 4 is widely used as a testing ground for ideas 
about first-order phase transitions; for instance, methods for determining the order of a 
phase transition by numerical studies of finite systems have often been tested against the~2D 
Potts model. It is therefore useful to have at our disposal exact results about this model, in 
particular the correlation length, which allow us to determine the finitesize effects. 

It is commonly admitted that there is an equivalence between the Potts model and the 
diagonal &vertex model which allows the calculation of free energy. In order to determine 
the correlation length we must find the next largest eigenvalue of the Poas model and thus 
we must study more precisely the equivalence betwein the spectra of the.transfer matrices 
of both models. 

In this paper, following a scheme given by Martin [ l ]  we prove the identity of these 
spectra (section 2). Then, at the transition temperature, we solve the homogeneous diagonal 
&vertex model, using a Bethe ansatz given by Owczarek and Baxter [2] (section 3). 

Through a hyperbolic parametrization we find analytic expressions for the free energy 
and the correlation length (4.44) and (4.46). The behaviour of the latter for Q -+ 4 is 
derived in the appendix. 

1.1. The Pons model 

The Q-state Potts model [3,4] is a generalization of the Ising spin model. The spin 
variables U ,  associated with the sites of a 2D .square lattice, can take Q different values. 
The Hamiltonian of the model is, in the isotropic case considered in this paper, 

(1.1) 

where the summation is over all edges (i. j )  of the graph. 
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Consider two successive rows. Let r$ = [q, .  . . ,UN] be the spins in the lower row and 
+’ = [U;, . . . , U ; ]  the spins in the upper row. The Boltzmann weights corresponding to the 
addition of 4’ is described by the matrix V W  where 

N 
Vu,, = exp K S ( q ,  q + l ) )  n 8 ( u j ,  U;) 

s(uj, U;) 

describes the horizontal interactions 
j = 1  j = 1  

(1.2) 
( N - l  

1 ( ”  j= l  
describes the vertical interactions w ~ , ~ ,  = exp K 

(with K = J / ~ B T ) .  We can write the partition function of a lattice with M rows and N 
columns with free boundaries as 

ZN = et ( v w ) (  vw) . . ‘ (vw) (  v w )  vg (1.3) 

containing M factors V and M - 1 factors W; { is a QN-dimensional vector whose entries 
are all unity. 

As shown by Baxter [5], the correlation length along a column is 

where A- is the largest eigenvalue of the transfer matrix and A2 is the next largest 
eigenvalue not degenerate with A, in the thermodynamic limit. 

2. Spectra of the Potts model and the 6-vertex model 

In this section, we shall prove the identity of the transfer matrix spectra for the Potts model 
and for the particular 6-vertex model under consideration. 

2.1. Temperley-Lieb algebra representations 

We consider the Temperley-Lieb algebra, defined by 2N generators Uj which verify 

UiUj =UjUj 

UjUjilUj = Uj Vi. 

with [ i  - j l  > 2, Vi, j (2.lb) 

(2.lC) 

This algebra is denoted ‘&(e). 
representations (see Baxter [SI ch 12). 

set of Q values. The representation is a set of QN x Q N  matrices defined by 

We then introduce the two particular following 

(i) The Potts representation. This acts on (q, . . . ,UN),  with ut taking its values in a 



Correlation length of the Potts model at thefirst-order transition 3047 

It is readily observed that 
U-, 

(2.3a) 

(2.3b) 

with x = &(exp K - 1) and 3 is the identity operator. 

[-I, f t). The representation is a set of 4N x 4" matrices defined by 
(ii) The 6-vertex representation. This acts on (U,, . . . , u z ~ ) ,  with ai taking its values in 

(UiL,m, = S ( U I ,  U;) ' . . S ( U ~ - I , U ~  -, )h(Uji,Ui+l)h(o;!,U~+:+,)S(Ui+z,0;!+z)...S(u~~,u~~) 

(2.4) 

where 

h(+, +) = h(-, -) = 0 h(+, -) =e- *I2 h(- ,  +) ehp 

with 2cosh(A) = &. 
One can regard (U,, . . . , uw) as representing a row of nearvertical arrows: 

uj = + 
uj = - 

if the arrow in column j points up 

if it points down. 

We now introduce the operators V and W ,  defined by equations (2.3). One can verify that 
V is, in fact, the transfer matrix TI of a row of sites of type 1 in a 6-vertex inhomogeneous 
model generated by the diagonals with Boltzmann weights: 

0 1 = l  w z = 1  w g = x  w4 = x ws = 1 + xeh 0 6  = 1 +.~e-~ .  

They are associated with the six arrow arrangements respecting the ice rule. 

x x x x x x  
1 2 3 4 5 6 

Likewise q-N12W is the transfer matrix T2 for a row of sites of type 2 in the same 
inhomogeneous 6-vertex model, with weights 

0 1  = x  w z = x  - @ = I  0 4 = 1  w s = x + e h  , u g = x + e - '  

(see Baxter 151, pp 334-7). 
Figure 1 illustrates the correspondence between the two models. In what follows we 

only consider the transition point x = 1. Furthermore, since 0 5  and 0 6  always appear the 
same number of times (because of the ice rule), we replace wg and 06 by e. We 
thns end up with a homogeneous diagonal 6-vertex model with weights 

w 1 = 0 ~ = 0 3 = 0 4 = 1  0 5 = 0 , = c = & 5 .  (2.5) 
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\/\/\/\/ 

Figure 1. The square lanice of the PoUs model, (in bold) 
and the associated &vertex lattice. The two classes of 
Site of the 6-verrex model are indicated (they comespond 
lo the veltical and horizontal edges of the square lattice). 
In this example, N =4and M =  3. 

2.2. The regular representation of the Temperley-Lieb algebra 

Before studying the completeness of the two representations described above, we are going 
to describe a representation of this algebra which contains all irreducible components. This 
is the regular representation, defined by letting the algebra act on itself. We are then led to 
study the action of T w ( Q )  on the products of Vi. As shown by Jones [6], we can put these 
products in a 'reduct-for". It is interesting to consider a representation which is related to 
these reduct-fonn of the products and to index them like the wa lk  written on the so-called 
Bratelli diagram. 

1 2 3  

2N+1 

5 

3 

1 

It is obvious that we can define a walk on this diagram by a sequence (s) of 2N + 1 integers 
which verify 

so = 1 si 2 1 Is; - sic11 = 1 v i .  

Then we call S(2N) the set of sequences of length 2N + 1, i.e. the set of walks on the 
diagram; S(2N,  m) the set of walks which end up at m; and P(2N)  and P ( 2 N .  m) the sets 
of pairs of elements of S(2.N) and S ( 2 N ,  m) respectively. 

In order to find all irreducible components of this algebra, we need to exhibit a set of 
central idempotent operators (then the matrices will break into diagonal blocks) and then 
to show that the entire algebra can be written as a direct sum of ideals generated by these 
idempotents. 

We first identify a set of idempotents. 
Let Zm E TzN(Q) with m = 0,1, . . . , 2 N  be defined by 

20 = 3 and L+I = Im(J - ~,+zU,+I)I, (2.6) 

where k. is chosen such fiat & - k,-= l/(kn+,), i.e 

(:). (2.7) with r such that Q = 4 cosh' 
sinh((n - l ) n / r )  

sih((n)x/r) . 
k ,  = i 
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We can easily prove by recursion that 

( I ~ U L . + I ) ~  4 k&IbUb+i I,” = 4 UiIb = IbUi = 0 Vi < b. (2.8) 
The set of operators E, defined by 

E, = I,,,-z for m = 2, . . . ~ 2 N  + 2 and E ,  = Id (2.9) 
is a set of idempotents. Let us study the ideals generated by these idempotents. 

We now introduce the representation of TzN(Q) which is associated with the Bratelli 
diagrams,~find a free family of operators, and deduce~the independence between all ideals. 

The representation-of the.algebra TI&!) acts in a space which has the walks on the 
Bratelli diagram (i.e. the Is] E S ( 2 N ) )  as a basis. The matrices are linear combinations of 
the matrices (s, t )  which transform a basis vector in another one with the definition 

’ . 

[s]%(t]  and ( s ’ ] 2 0 ,  

In order to show that the above definitions define a representation of Tw(Q) we must 
associate with each matrix an operator of TzN(Q) and verify that the elementary product of 
matrices in this representation corresponds to the associated product of operators. 

Let us first associate amoperator with each element (s, t )  of P ( 2 N ) :  
Considering the elementary ‘action’ rs,i on a sequence (s] which transform Is] into 1s’) 

with (s‘) differing from (s] only at the ith position: 

(,.I) I ( ,+I )  

We easily observe that we can construct each [s] E S ( 2 N ,  m) from another walk (s’] 
below 1s) by iterating the ‘actions’ rs,z. In particular, for every [s} E S(ZN, m) we can 
begin the construction with the walk e,,, defined by 

We use this construction to define a correspondence between pairs of walks on the diagram 
and operators of TzN(Q).  We introduce the notation p for 4(2N + 1 - m) and E:’) is 
then obtained from E, by replacing each U, by (1;+2‘ in the writing of E,  in terms of the 
generators of Tw(Q). 
we begin with (e,, e,) cf we begin wlth n U ~ i - l E 2 ~ )  

l < K D  . .  . .. .. 

tf multiplication by 
(2.12) 

, .  

* multiplication by 
rj,i at right 

(s, t )  E P(” m) 
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Following this scheme, (s, t )  is associated with an operator of % N ( Q )  called T(s, 2 ) .  
We can justify the consistency of our consfmction, since the definition of (s, t )  is unique, 

i.e. it is independent of the choice of order in which the identities may be applied in moving 
from the initially defined operator (e,,,, e,,,) to (s, f). This derives &om the relation (2.1~). 

(2.13) 

which means that the algebra of ma’uices (U. s) E P(2N) is indeed a representation of the 
algebra T ~ N ( Q )  because the laws of product are conserved through T. ((2.13) is obtained 
by a recursion on the pair (s, t), with respect to the lexicographical order in P(2N)). 

From (2.13) we can also deduce trivially that {T(s ,  t)/(s, f) E P(ZN)} is a free family 
of operators. This states the independence between the ideals generated by the idempotents. 

We must now prove that the whole algebra can be covered by these operators. To this 
aim, we associate new operators of Tm(Q) with each element of P(2N): 

E Buffenoir and S Wallon 

With our definitions, we can verify the relation 

?-(U, s) .T(t, U) = 8, ,7(u,  U) 

we begin with (e,,,, e,,,) tf we begin with n U2i-l 
1<i<p 

+ multiplication by U? at left iteration of 
tr,, at left 

iteration of II t2,; at right + multiplication by U; at right. 
w -  

(s. 0 E P W ,  m) 
So (s, t )  is associated with an operator of TzN(Q)  which is called T’(s, t).  Then with these 
definitions, we can show that (T’(s, t ) / (s ,  I) E P(2N)J is a basis of T ~ N ( Q ) .  

(i) We can first relate the ideals generated by 7 ( e m ,  e,,,) and by 7‘(e,,,, e,,,): writing 
E,,, as a linear combination of the identity and of products of Ui with i E { 1, . . . , m - 21, 
it follows that: the ideal generated by T(e,,,, em) is the sum of the ideal generated by 
T‘ (em,  e,,,) and of the ideal generated by an operator which belongs to the ideal generated 
by T’(em-2, em-z). 

(ii) This relation allows us to lead a recursion on m to prove that all the words T‘(s, t )  
are linearly independent by using the results of independence obtained on the T(s,  t ) .  The 
recursion stops at m = 2N + 1 where T’(em, e,,,) = 4.  Thus the algebra T ~ N ( Q )  is indeed 
the ideal generated by T ( e m ,  em), that is {T’(s, f ) / ( s ,  t )  E P ( Z N ,  2N + l)]. 

The independence arguments ensure that T’(P(2N)) is a basis of GN(Q). But we also 
have a direct isomorphism between ‘T(P(2N)) and T’(P(2N)) (by construction) and then 
we can deduce that I ( P ( 2 N ) )  is a basis of T ~ N ( Q ) .  

TzN(Q) = @vect.sp.(T(P(2N, m))). 

The decomposition of Tw(Q) into irreducible components is then 

m 

2.3. Completeness of the 6-vertex and Pons representations 

We have written T ~ N ( Q )  = e,,, vect.sp.(T(P(2N, m))). So we see that each irreducible 
component of TzN(Q)  is indeed associated with an m such that m is odd and m < 2N + 1, 
because all irreducible components have as a basis the elements of P(2N. m) respectively, 
that is the walks in the Bratelli diagram which arrive at m. 

We then deduce that the largest number of irreducible two-by-two inequivalent 
components of a representation of Tm(Q) is, in fact, N + 1. 
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2.3.1. 6-vertex representation. As shown by Baxter [5] the ice rule implies that the U,!s 
relate only states with the same number n of up arrows in a line. There is an associated 
irreducible component for each n but the components associated with n = N + k and 
n = N - k are interlaced with the uptdown reversion of the spins. So, the irreducible 
components are indexed by n = 0,. . . , N .  Thus the number of irreducible two-by-two 
inequivalent components is the same as the regular representation one, i.e. N + 1. 

Hence this representation is complete. 

2.3.2. Pons representation.  the dimension of the state space for a chain of N Po& sites 
is QN. From the latter decomposition of Tm(Q) into irreducible components (described in 
2.2), this dimension is the sum of dimensions associated with all components. 

We have seen that the dimension of the component associated with m in T ~ N ( Q )  is 
the number of walks in the Bratelli diagram which end at m. This dimension is then 
Card[S(ZN. m)] which c k  be calculated by combinat~orial arguments 111. 

Jones [6] has shown that the algebra TZN( Q) can be obtained thiough a certain projection 
from T . + z ( Q ) .  The properties of this projection and those of our irreducible components 
allow us to conclude that. the degeneracies associated with the mth component in the Potts 
representation of T z ~ + ~ ( Q )  (with m E [3, . . . , 2 N  + 31) are the same as those associated 
with the (m - 2)th component in the representation of T.(Q). Thus these degeneracies 
depend on m and N only through p = i ( 2 N  + 1 - m). We denote them dp. 

The equality between the dimensions of the state spaces is then 

We now lead a recursion on N to determine dN when we know di for i i N (we begin 
from do = 1). We find that for Q t 4, all the dps are positive, so at each step of the 
recursion there is one new component which is, in fact, present in the Potts representation. 

We conclude that each of the N + 1 irreducible components is the Potts representation, 
which is thus completet. 

2.3.3: The spectra of the transfer matrices. The transfer matrix is a polynomial of the Uis. 
The two representations are complete and we thus conclude that: 

The spectra of the 6-vertex and Potts transfer matrices are identical (with different 
degeneracies). 

3. Bethe ansalz 

Let us consider a &vertex model on a rotited M x N lattice (with 2M x N sites), with 
weights w1 = wz = y = 04 = 1, wg = w g  =~ c for the six internal vertices and with 
weights 07 = 1, w~ = d,  0s = e, w10 = 1 for the four boundary vertices, with de = 1 and 
d + e = c : ~  

x x  x x x x < < > >  
1 2 3 4 5 6 7 e 9  10 

t 'This was suggested by V Pasquier. 
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The partition function is given by 
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z =  n (weights) = Tr((cE)"). 
e0"Sgu"tions VeIliceS 

(3.1) 

We have Zp,, = Q'MxN'r'Z6v since x = 1 at the transition point (see 2.1). Thus 

(3.2) 
FPO, ZP,, 1 In z 6 V  

( N  x MI' =-he+  - _ =  
kT (Number ofPo& sites) 2 

There appear two types of rows of vertices and edges, as explained in section 2. 

the down arrows of the configuration 1 < XI < . . . < x, 6 2 N .  

and type-2 row of edges, respectively, having the property 

Let us identify a state of type-1 (or type-2) row of edges by defining the positions of 

Let x = [ x i ,  . . . , x n ]  and C(x)  and F ( x )  be the element of a vector, defined on a type-I 

(3.3a) 

(3.3b) 

We deduce 

AZG = (TzTi)G (3.4a) 

and 

A ~ F  = ( T ~ T ~ ) F .  . (3.4b) 

Thus G (respectively F )  is the eigenvector of the two-row transfer matrix TzT, (respectively 
TI Tz) and A' is its eigenvalue. It follows that the pmition function is asymptotically equal 
to 

26" - 12% (3.5) 

where A L  is the largest eigenvalue of (TIT*). The correlation length is given by 

= l/ln(Azm/A;). (3.6) 

We introduce the Bethe ansatz: 
. . .  

F(xi,. . . ,xn) = xepA(ki .  .. . , k , ) f ( x i , k i ) .  . .f(x,,k,,) 

G(xi, ... = z E p A ( k i r . .  ., kJf(xi, ki) . . . f(x,. k.1 

(3.7a) 
P 

(3.7b) 
P 

and 

(3.74 
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where the sum extends over all permutations and negations of the k and ep changes sign 
over all 'mutations'. The quantities f ( x ; ,  k;) and g(xi, k;) are the 'single-particle wave- 
functions' defined as 

f ( x ,  k j )  = A,(kj)eiklx for x even (3.8a) 

f ( x ,  kj) = Aj(kj)@'" for x odd (3.86) 

for x even (3 .8~)  g ( x , k j )  =-B,(kj)e 

g(x ,k j )  = Bi(kj)e'klX for x odd. (3.84 

ikjx 

The Bethe ansatz (3.7) trivially satisfies the general equations (3.3). We define 

and 

which verify 

r(k) t (k)  = ezk 

t (k)  = ( 1  -I- c . r (k ) ) / (c  + r(k)) .  

Setting 

We also have the meeting conditions, which give 

(3.9a) 

(3.9b) 

(3 .10~)  

(3.10b) 

(3 .11~)  

(3.11b) 

(3 .11~)  

(3.12a) 

(3.12b) 

(3.134 

(3.13b) 

S(kj ,kj+l)A( ... kj,kj+t ... ) - ~ ( k j + l , k j ) A ( . . . k j + ~ , k j . . . )  = O  (3.14) 
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where 
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r(k') + r(k)r(k'), 
r (k)  9 - 1 

s(k, k') = 1 + - + - 
c c 

(3.15) 

Other equations are found from these by appropriate negations and permutations. We now 
define 

B(k, k') = ~ ( k ,  k') . ~ ( k ' ,  4). (3.16) 

Hence to obtain the compatibility condition following a scheme given by Owczarek and 
Baxter [2] 

A solution of the Bethe ansatz equations is given by 

Periodic boundary conditions would give another compatibility equation: 

4. Parametrization (for free boundaries) 

We remember that 

c = JS. 
We try to express for Q > 4, so c > 2. 

A good parametrization is 

a = l  b = 1 c = sinh(2u)/sinh(u). 

Since c > 2, we have U > 0, and Q -+ 4' w U -+ O+. Setting 

sinh(tu + iaj) 
sinh(iu - iaj) r(kj)  . 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(4.1) 

(4.2) 

(4.3) 
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this new parametrization gives, using (3.15), 

s(k.  ke) I.- - 
s(kL, kj) 

sinh(2u - i(aj -at)) 
sinh(2u + i(aj - &))’ 

We have shown that 66’ = I for free, boundary conditions (see (3.1 1)). Thus 

(4.4) 

This implies, using (3.16) and (3.10), 

sinh(iu + icrj) sinh($v + iaj) 
sinh(iu - iaj) sinh($v - iaj) 

“ sinh(2u + i(aj - at)) sinh(2v + i(aj +at)) 

V j  = 1,. . . , n (4.6) 

aj is real and can be chosen in [-n, XI .  
Now consider r(kj) = [sinh($~ +~iaj)l/[sinh($u - icrj)]. Its modulus is 1. Since 

and 

(4.7) 

the maximum eigenvalue will be obtained if argrj Y~ 0. We must thus take a compact set 
of aj around zero. We can, moreover, take a symmetric set with respect to zero since (4.6) 
is invariant under cre + -ate. This leads us to take 

aj+l - aj << 1 , when N 4 CO. (4.9) 

Let us define 2NR(a)da/2n as the number of ajs between a and a + doc. Setting 

sinh(u + icr) 
sinh(u - icr) 

@(a, U) = iln (4.10) 
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We have 

Zsinh(2p) 
cosh(2ia) - cosh(2~)  ' 

+'(a, P) = 

Developing R in Fourier series 

+m . 
R(a) = R,eImu 

-m 

we obtain 

(4.13) 

(4.14) 

(4.15) 

Using a contour integration, we obtain 

(@'(a, p)), = -(I + (-l)m)e-'m'". (4.16) 

The Fourier transform of (4.12) gives 

(+'(a, + (+'(a, $ u ) ) m  = -4% + (+'(a, 2u))m2Rm. (4.17) 

Since the set is symmetric, R(a) is an even function of a, with R,,, = R,. Thus 

R , = O  if m is odd (4.1 Sa) 

cosh(lm1 i u )  
2 cosh(1mlu) R, = if m is even 

numberofcij - n -- "dLY 

Ra = L, z ; ;R(~)  = 2N 2N'  

(4.1Sb) gives 

n 1  
2N 2 
_ = _  and 

1 
Ro = - 

2 

(4.18b) 

(4.19) 

(4.20) 

which could have been predicted, using the symmetry with respect to up/down arrow 
reversion of the diagonal &vertex model. 

4.1. Free energy 

For this calculation, we shall use 

(see 3.7). Let us define 

@(Uj) = h'(kj). 

(4.21) 

(4.22) 
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Since 

A2(kj) = (cr(kj) f 1) (z + I) 
. ~ r(kj) 

we derive 

sinh(iv + iaj) sinh($u - iaj) 
smh($u + iaj) sinh($u - iaj) ' 

A2(kj) = , 

(4.23) 

(4.24) 

The free energy is given by 
d a  

(4.25) 
1 kT 
-kT In Q +F= - - I I I A ~ ~  = -2kT 1, GI?@) In @(a). 
2 N 

Developing In(@) in Fourier series, we note that 

(4.26) 

Defining 

sinh(iu, - ia) n eimu 2isinh(2u) 
sinh(&u + ia) 

)=-/ _ _  (4.27) 
-n 2n im cosh(u - 2ia)-cosh(2u) 

and, using a contour integration, we obtain, for m < 0, 

and, for m > 0, 

' Im  = - e-lmlu(l+ (-1)m). (4.29) 
Iml 

In fact we derive that 

(4.30) 
2 

[In$]-,,, = -e-lml" sinh(lmliu)(l + (-1)'"). 
Iml 

We must calculate [In$]o: 

li dar 
2 7 ~  

sinh(!u - ia) sinh($u + ia) 
sinh(iu - ia) sinh(4u + ia) ' [In @IO = 1, - In (4.31) 

Considering [In @.IO & a function of U: [In $10 = F ( u ) ,  we derive that 

~ ~ ~ (4.32) 

1 2sinhu - _  a d a  3 2sinh3u 
F'(u) = 1 - (- 

-li 2x 2cosh3u -coshZia 2coshu -cosh2ia 
-2 - 

.2v, and we eventually get 

*(# J ca, iu ) )o  + $(#'(a, $J))o = 2. 

Thus, Ro[ln @IO = 

where 

2 c o s h u = m  ~~ (4.33) 

the result of Baxter [Sl.ch 12-5. 



3058 

4.2. Correlation length 

Again we consider ow equations for U + 00 [81: we have hZ = n,<,<" $(aj) with 

E Buffenoir and S Wallon 

sinh($u + iaj) sinh(su - iaj) 
Haj) = (1 +cr(kj)) 1 + - = ( r;j)) sinh($u +iaj)sinh(fu -iaj)' 

(4.34) 

An eigenvalue obtained by moving an Ij is degenerate with the Iargest eigenvalue. The 
next largest eigenvalue, different from the largest, is obtained by introducing a hole in the 
last set of l js .  

We note 

Fi(aj) = W j ,  +@@j. p )  3 and FZ(Xj)  = ,$(lrj, 2v). (4.35) 

Let us take the state associated with Z,! = 1, for j # k and a hole at the kth position (so 
n' = N - 1). Such a hole can be handled as shown by Johnson eta1 [7]. 

Let us write our compatibility equation for the two distributions of ajs and a$ 
associated, respectively, with Ij and I,!: 

where x(a) is the limit of 2N(4  -aj)  in the thermodynamic l i t .  It gives, with the result 
(4.13, 

(4.37) 

We can solve such an equation through a Fourier series, letting J,,, = J-", daJ(a)e-ime/2i7. 
We have easily 

Sa, for m even different from zero: 

We also have 

d a  . = 1 -e'"(In@)'(a) =~-2i(l + (-l)m)e-'mlusinh(lml~v) i fm 2 0 
-r 2 X  

= + 2i ( l+  (-l)'")e-'"'" sinh(lml$) if m < 0. (4.40) 
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The eigenvalue given by the set of I j  is denoted A;; then, because cfj % cfj. we have 

(4.41) 

and hence 

Considering ln(A;/A&) as a function of the variable cfk we can easily see that this function 
has an extremum assoclated with the greatest A, for c f k  = z/Z, then 

m 
- ~ - 1 =  -4 C me (-om -a" smh(mu) . tanh(2mu) 21n (-) (4.43) 

m=l  

for our &vertex model. Thus 

(4.44) 
1 

2ln(cosh ?u/cosh $U) + 4  ~,"=l((-l)m/m)e-2"u sinh(mu) tanh(2mu) C =  

w i e  2cosh U = ca. The behaviour of e for 'Q +~ 00 is 

- 211nQ. ~. (4.45) 
Q-m 

This result can also be obtained using la rge9  expansion in the disordered phase. The 
spin-spin 'correlation function at distance r is 

It is shown in the appendix that is also given by 

c-1 =,Eh( 1 + Ificosh((x'/Zu)(n + $))I-' 
1 - [ficosh((x2/2u)(n + $))Iw1 n=O 

. .  
with 2 cosh U = m. Its first term gives 'the analytic form 

(4.46) 

(4.47) 

Johnson et a! [7] have computed the correlation length of the &vertex model near the 
critical region. 

This is also l / f i  times the correlation length of the Potts model along the diagonal. 
The two formulae for this length agree near the critical region as expected fiom restoration 
of rotational invariance. 
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5. Conclusion 

For the q = 10 Potts model, our prediction for the correlation length at the transition point 
is f = 10.56. This is larger than estimates from Monte Carlo simulations. In [9] the 
correlation length at p, is obtained from the spin-spin correlation function projected to non- 
zero momenta (such a correlation function behaves exponentially with the distance). The 
quoted result is f = 5.66 rt 0.09, it is interpreted as the correlation length in the ordered 
phase (allowing for the possibility that the correlation length is not the same in  the two 
coexisting phases). 

In [lo] the correlation length at the peak of the specific heat (at a temperature slightly 
higher than PI) is obtained from the spin-spin correlation function. The correlation function 
is not projected to a definite momentum, and behaves like an exponential with a power-like 
prefactor. The quoted result is e = 5.9 & 0.7. 

We have shown that our result agrees with the correlation lengh in the disordered phase, 
in the large-q limit. A possible interpretation of the discrepancy with the Monte Carlo data 
is that the correlation length is larger in the disordered phase than in the ordered phase. 
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Appendix. Behaviour of the correlation Iength near the limit Q = 4 

The behaviour of the correlation length near the critical point is known from renormalization 
group considerations [13]. Our exact resuIt will allow us to rederive this behaviour 
analyticallyt by looking for the behaviour of (4.44) near Q = 4. 

We can rewrite f - l  by developing this expression in powers of e-" which gives 

t This was suggested by R Balian. 
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This allows~us to perform the summation over m according to 

or 

) . (A.4) 
~ 0 ~ h ( ( 4 k + 3 ) i ~ ) ~ 0 ~ h ( ( 4 k  -3);~) 
cosh((4k + I)fu)cosh((4k - 1)iu) 

e-' 1 +OO - = - I C ( - ~ ) k i n  
2 2 - -  

By using the Sommerfeld-Watson method, we replace the summation over k in (A.4) by 
the contour integral 

over the contour 

. .  ~. . 
We integrate by pam (AS) and find 

dz ln( tan(~nz))[ tanh((4~+3)~v)~+ tanh((4z - 3) ;~)  

- tanh((4z + 1);~) - tanh((4z - I)&)] 

5 -I -= 
2 

with the appropriate changes of variables we find 

i.e. 

The poles of tanh(2uz) are z = i(n + $)x/2u, with residue -1/2u. 
the contour (A.6) into 

We now can deform 
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This leads to a new expression for $: 

E Bufenoir and S Wallon 

(A.10) 

with 2cosh v = m, 
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